资源类型

期刊论文 97

会议视频 2

年份

2024 1

2023 13

2022 10

2021 16

2020 5

2019 3

2018 4

2017 6

2015 5

2014 4

2013 1

2012 2

2011 8

2010 2

2009 2

2008 4

2007 5

2006 1

2005 1

2002 2

展开 ︾

关键词

柔性机器人 2

生物材料 2

9 + 2结构 1

ARM 1

ARM7 1

CAN总线 1

CFD 1

FHW 1

Nagle算法 1

临界深度 1

人工纤毛 1

仿生系统 1

低雷诺数 1

允许深度 1

先进冷却 1

光纤测试 1

光遗传学 1

决策支持 1

刮板输送机 1

展开 ︾

检索范围:

排序: 展示方式:

Design and experiment of a novel pneumatic soft arm based on a deployable origami exoskeleton

《机械工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11465-023-0770-2

摘要: Soft arms have shown great application potential because of their flexibility and compliance in unstructured environments. However, soft arms made from soft materials exhibit limited cargo-loading capacity, which restricts their ability to manipulate objects. In this research, a novel soft arm was developed by coupling a rigid origami exoskeleton with soft airbags. The joint module of the soft arm was composed of a deployable origami exoskeleton and three soft airbags. The motion and load performance of the soft arm of the eight-joint module was tested. The developed soft arm withstood at least 5 kg of load during extension, contraction, and bending motions; exhibited bistable characteristics in both fully contracted and fully extended states; and achieved a bending angle of more than 240° and a contraction ratio of more than 300%. In addition, the high extension, contraction, bending, and torsional stiffnesses of the soft arm were experimentally demonstrated. A kinematic-based trajectory planning of the soft arm was performed to evaluate its error in repetitive motion. This work will provide new design ideas and methods for flexible manipulation applications of soft arms.

关键词: pneumatic soft arm     soft airbag     deployable origami exoskeleton     bistable characteristics     cargo-loading capacity    

Design and modeling of a novel soft parallel robot driven by endoskeleton pneumatic artificial muscles

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0678-2

摘要: Owing to their inherent great flexibility, good compliance, excellent adaptability, and safe interactivity, soft robots have shown great application potential. The advantages of light weight, high efficiency, non-polluting characteristic, and environmental adaptability provide pneumatic soft robots an important position in the field of soft robots. In this paper, a soft robot with 10 soft modules, comprising three uniformly distributed endoskeleton pneumatic artificial muscles, was developed. The robot can achieve flexible motion in 3D space. A novel kinematic modeling method for variable-curvature soft robots based on the minimum energy method was investigated, which can accurately and efficiently analyze forward and inverse kinematics. Experiments show that the robot can be controlled to move to the desired position based on the proposed model. The prototype and modeling method can provide a new perspective for soft robot design, modeling, and control.

关键词: pneumatic artificial muscles     soft robot     modeling approach     principle of virtual work     external load    

Modular crawling robots using soft pneumatic actuators

Nianfeng WANG, Bicheng CHEN, Xiandong GE, Xianmin ZHANG, Wenbin WANG

《机械工程前沿(英文)》 2021年 第16卷 第1期   页码 163-175 doi: 10.1007/s11465-020-0605-3

摘要: Crawling robots have elicited much attention in recent years due to their stable and efficient locomotion. In this work, several crawling robots are developed using two types of soft pneumatic actuators (SPAs), namely, an axial elongation SPA and a dual bending SPA. By constraining the deformation of the elastomeric chamber, the SPAs realize their prescribed motions, and the deformations subjected to pressures are characterized with numerical models. Experiments are performed for verification, and the results show good agreement. The SPAs are fabricated by casting and developed into crawling robots with 3D-printing connectors. Control schemes are presented, and crawling tests are performed. The speeds predicted by the numerical models agree well with the speeds in the experiments.

关键词: soft robot     soft pneumatic actuator     kinematic model     crawling robot     modular design    

Precise semi-analytical inverse kinematic solution for 7-DOF offset manipulator with arm angle optimization

《机械工程前沿(英文)》 2021年 第16卷 第3期   页码 435-450 doi: 10.1007/s11465-021-0630-x

摘要: Seven-degree-of-freedom redundant manipulators with link offset have many advantages, including obvious geometric significance and suitability for configu-ration control. Their configuration is similar to that of the experimental module manipulator (EMM) in the Chinese Space Station Remote Manipulator System. However, finding the analytical solution of an EMM on the basis of arm angle parameterization is difficult. This study proposes a high-precision, semi-analytical inverse method for EMMs. Firstly, the analytical inverse kinematic solution is established based on joint angle parameterization. Secondly, the analytical inverse kinematic solution for a non-offset spherical–roll–spherical (SRS) redundant manipulator is derived based on arm angle parameterization. The approximate solution of the EMM is calculated in accordance with the relationship between the joint angles of the EMM and the SRS manipulator. Thirdly, the error is corrected using a numerical method through the analytical inverse solution based on joint angle parameterization. After selecting the stride and termination condition, the precise inverse solution is computed for the EMM based on arm angle parameterization. Lastly, case solutions confirm that this method has high precision, and the arm angle parameterization method is superior to the joint angle parameterization method in terms of parameter selection.

关键词: 7-DOF redundant manipulator     inverse kinematics     semi-analytical     arm angle     link offset    

Design of damping valve for vehicle hydro pneumatic suspension

DONG Mingming, HUANG Hua, GU Lian

《机械工程前沿(英文)》 2008年 第3卷 第1期   页码 97-100 doi: 10.1007/s11465-008-0014-5

摘要: According to the design features of a hydro pneumatic spring, the necessity of a separate damping valve is proposed. Based on a 1/4 vehicle linear suspension model, the optimum damping coefficient is worked out and the parameters of the damping valve are determined with the equivalent linearization method. A practical structure of the damping valve is proposed having a small size, high flowrate when the valve opens, and the ability of enduring high back pressure. Based on bench tests, the damping valve has been found to properly work and be suitable. The design method and damping valve structure are useful guides for hydro pneumatic suspension, especially for the design of heavy-duty vehicles.

关键词: ability     pneumatic     necessity     flowrate     equivalent linearization    

A modular cable-driven humanoid arm with anti-parallelogram mechanisms and Bowden cables

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0722-2

摘要: This paper proposes a novel modular cable-driven humanoid arm with anti-parallelogram mechanisms (APMs) and Bowden cables. The lightweight arm realizes the advantage of joint independence and the rational layout of the driving units on the base. First, this paper analyzes the kinematic performance of the APM and uses the rolling motion between two ellipses to approximate a pure-circular-rolling motion. Then, a novel type of one-degree-of-freedom (1-DOF) elbow joint is proposed based on this principle, which is also applied to design the 3-DOF wrist and shoulder joints. Next, Bowden cables are used to connect the joints and their driving units to obtain a modular cable-driven arm with excellent joint independence. After that, both the forward and inverse kinematics of the entire arm are analyzed. Last, a humanoid arm prototype was developed, and the assembly velocity, joint motion performance, joint stiffness, load carrying, typical humanoid arm movements, and repeatability were tested to verify the arm performance.

关键词: modular robotic arm     anti-parallelogram mechanism     Bowden cable     humanoid arm     lightweight joint design    

A novel task-oriented framework for dual-arm robotic assembly task

《机械工程前沿(英文)》 2021年 第16卷 第3期   页码 528-545 doi: 10.1007/s11465-021-0638-2

摘要: In industrial manufacturing, the deployment of dual-arm robots in assembly tasks has become a trend. However, making the dual-arm robots more intelligent in such applications is still an open, challenging issue. This paper proposes a novel framework that combines task-oriented motion planning with visual perception to facilitate robot deployment from perception to execution and finish assembly problems by using dual-arm robots. In this framework, visual perception is first employed to track the effects of the robot behaviors and observe states of the workpieces, where the performance of tasks can be abstracted as a high-level state for intelligent reasoning. The assembly task and manipulation sequences can be obtained by analyzing and reasoning the state transition trajectory of the environment as well as the workpieces. Next, the corresponding assembly manipulation can be generated and parameterized according to the differences between adjacent states by combining with the prebuilt knowledge of the scenarios. Experiments are set up with a dual-arm robotic system (ABB YuMi and an RGB-D camera) to validate the proposed framework. Experimental results demonstrate the effectiveness of the proposed framework and the promising value of its practical application.

关键词: dual-arm assembly     AI reasoning     intelligent system     task-oriented motion planning     visual perception    

A pneumatic cylinder driving polyhedron mobile mechanism

Wan DING, Sung-Chan KIM, Yan-An YAO

《机械工程前沿(英文)》 2012年 第7卷 第1期   页码 55-65 doi: 10.1007/s11465-012-0301-z

摘要:

A novel pneumatic cylinder driving polyhedron mobile mechanism is proposed in this paper. The mechanism is comprised of 5 tetrahedrons which includes a pneumatic cylinder in each edge. It locomotes by rolling and the rolling principle refers to the center of mass (CM) of the mechanism moved out of the supporting area and let it tip over through the controlling of the motion sequence of these cylinders. Firstly, the mathematical model is built to analysis the relation between the configuration and the CM of the mechanism. Then, a binary control strategy is developed to simplify and improve the control of this mobile mechanism. After that, dynamic simulation is performed to testify the analytical validity and feasibility of the rolling gaits. At last, a prototype is fabricated to achieve the rolling successfully to demonstrate the proposed concept.

关键词: mobile mechanism     polyhedron     cylinder    

智能阀门定位系统的设计

吴爱国,王立石

《中国工程科学》 2005年 第7卷 第4期   页码 69-73

摘要:

介绍了一种基于ARM的智能阀门定位系统的硬件设计和定位控制方法。其中应用Philips公司的带CAN总线接口的ARM控制器作为系统的控制核心,既满足了现场实时数据的采集、计算和处理,又可以通过CAN总线使得阀门控制器和控制中心保持实时通信;控制策略采用带智能积分的自学习模糊控制算法

关键词: ARM     控制器     CAN总线     智能积分     自学习模糊控制    

Al-NaOH复合液态金属——一种具有热和气动特性且快速响应的水触发材料 Article

袁博, 孙旭阳, 刘静

《工程(英文)》 2020年 第6卷 第12期   页码 1454-1462 doi: 10.1016/j.eng.2019.08.020

摘要:

水触发材料因其操作简单、驱动柔和、成本低廉、环境友好等诸多优点受到越来越多的关注。但是,大多数此类材料通常具有较长的反应时间,并且需要严格的保存条件,这限制了它们在实践中的适应性。本研究提出并证明了一种基于Al-NaOH复合共晶镓-铟(eGaIn)合金的新型水触发材料,该材料具有快速响应性和可变形性。一旦加入水,制成的材料将在短短几秒钟内随着气体的产生而升温40 ℃,这表明它具有用作热驱动器和气动驱动器的巨大潜力。此外,研究还测试了新材料的可重复使用性和降解能力。并据此设计了双层结构的智能绷带,其内部填充了Al-NaOH复合eGaIn,而BiInSn则作为外部支撑材料。实验显示,厚度为2 mm的片状结构经过冷却处理后能够支撑1.8 kg的重物,这比常用的玻璃纤维高分子绷带的承重能力要好得多。同时,研究还使用Al-NaOH复合eGaIn制作了水触发球形机器人的原型,该原型在特定的外部刺激下实现了滚动和弹跳行为。这些发现表明,当前材料在开发未来的可穿戴设备、软驱动器和软机器人方面具有潜在价值。

关键词: 液体金属     水触发材料     自热材料     软驱动器    

Simulation of horizontal slug-flow pneumatic conveying with kinetic theory

GU Zhengmeng, GUO Liejin

《能源前沿(英文)》 2007年 第1卷 第3期   页码 336-340 doi: 10.1007/s11708-007-0050-6

摘要: Wavelike slug-flow is a representative flow type in horizontal pneumatic conveying. Kinetic theory was introduced to establish a 3D kinetic numerical model for wavelike slug gas-solid flow in this paper. Wavelike motion of particulate slugs in horizontal pipes was numerically investigated. The formation and motion process of slugs and settled layer were simulated. The characteristics of the flow, such as pressure drop, air velocity distribution, slug length and settled layer thickness, and the detailed changing characteristics of slug length and settled layer thickness with air velocity were obtained. The results indicate that kinetic theory can represent the physical characteristics of the non-suspension dense phase flow of wavelike slug pneumatic conveying. The experiment in this paper introduced a new idea for the numerical calculation of slug-flow pneumatic conveying.

关键词: velocity distribution     detailed     slug-flow     gas-solid     theory    

Different manipulation mode analysis of a radial symmetrical hexapod robot with leg–arm integration

《机械工程前沿(英文)》 2022年 第17卷 第1期   页码 8-8 doi: 10.1007/s11465-021-0664-0

摘要: With the widespread application of legged robot in various fields, the demand for a robot with high locomotion and manipulation ability is increasing. Adding an extra arm is a useful but general method for a legged robot to obtain manipulation ability. Hence, this paper proposes a novel hexapod robot with two integrated leg–arm limbs that obtain dexterous manipulation functions besides locomotion ability without adding an extra arm. The manipulation modes can be divided into coordinated manipulation condition and single-limb manipulation condition. The former condition mainly includes fixed coordinated clamping case and fixed coordinated shearing case. For the fixed coordinated clamping case, the degrees of freedom (DOFs) analysis of equivalent parallel mechanism by using screw theory and the constraint equation of two integrated limbs are established. For the fixed coordinated shearing case, the coordinated working space is determined, and an ideal coordinated manipulation ball is presented to guide the coordinated shearing task. In addition, the constraint analysis of two adjacent integrated limbs is performed. Then, mobile manipulation with one integrated leg–arm limb while using pentapod gait is discussed as the single-limb manipulation condition, including gait switching analysis between hexapod gait and pentapod gait, different pentapod gaits analysis, and a complex six-DOF manipulation while walking. Corresponding experiments are implemented, including clamping tasks with two integrated limbs, coordinated shearing task by using two integrated limbs, and mobile manipulation with pentapod gait. This robot provides a new approach to building a multifunctional locomotion platform.

关键词: leg–arm integration     hexapod robot     fixed coordinated manipulation     mobile manipulation    

Development of soft kernel durum wheat

Craig F. MORRIS

《农业科学与工程前沿(英文)》 2019年 第6卷 第3期   页码 273-278 doi: 10.15302/J-FASE-2019259

摘要:

Kernel texture (grain hardness) is a fundamental and determining factor related to wheat ( spp.) milling, baking and flour utilization. There are three kernel texture classes in wheat: soft and hard hexaploid ( ), and very hard durum ( subsp. ). The genetic basis for these three classes lies with the Puroindoline genes. Phenotypically, the easiest means of quantifying kernel texture is with the Single Kernel Characterization System (SKCS), although other means are valid and can provide fundamental material properties. Typical SKCS values for soft wheat would be around 25 and for durum wheat≥80. Soft kernel durum wheat was created via homeologous recombination using the mutation, which facilitated the transfer of ca. 28 Mbp of 5DS that replaced ca. 21 Mbp of 5BS. The 5DS translocation contained a complete and intact locus and both puroindoline genes. Expression of the puroindoline genes in durum grain resulted in kernel texture and flour milling characteristics nearly identical to that of soft wheat, with high yields of break and straight-grade flours, which had small particle size and low starch damage. Dough water absorption was markedly reduced compared to durum flour and semolina. Dough was essentially unchanged and reflected the inherent gluten properties of the durum background. Pasta quality was essentially equal-to-or-better than pasta made from semolina. Agronomically, soft durum germplasm showed good potential with moderate grain yield and resistance to a number of fungal pathogens and insects. Future breeding efforts will no doubt further improve the quality and competitiveness of soft durum cultivars.

关键词: soft durum wheat     grain hardness     puroindolines     milling     baking     pasta     noodles    

Trajectory planning and base attitude restoration of dual-arm free-floating space robot by enhanced bidirectional

Zongwu XIE1 , Xiaoyu ZHAO1 , Zainan JIANG1 , Haitao YANG2 , Chongyang LI1

《机械工程前沿(英文)》 2022年 第17卷 第1期 doi: 10.1007/s11465-021-0658-y

摘要: When free-floating space robots perform space tasks, the satellite base attitude is disturbed by the dynamic coupling. The disturbance of the base orientation may affect the communication between the space robot and the control center on earth. In this paper, the enhanced bidirectional approach is proposed to plan the manipulator trajectory and eliminate the final base attitude variation. A novel acceleration level state equation for the nonholonomic problem is proposed, and a new intermediate variable-based Lyapunov function is derived and solved for smooth joint trajectory and restorable base trajectories. In the method, the state equation is first proposed for dual-arm robots with and without end constraints, and the system stability is analyzed to obtain the system input. The input modification further increases the system stability and simplifies the calculation complexity. Simulations are carried out in the end, and the proposed method is validated in minimizing final base attitude change and trajectory smoothness. Moreover, the minute internal force during the coordinated operation and the considerable computing efficiency increases the feasibility of the method during space tasks.

关键词: free-floating space robot     dual arm     coordinated operation     base attitude restoration     bidirectional approach    

Performance of soft-hard-soft (SHS) cement based composite subjected to blast loading with consideration

Jun WU,Xuemei LIU

《结构与土木工程前沿(英文)》 2015年 第9卷 第3期   页码 323-340 doi: 10.1007/s11709-015-0301-2

摘要: This paper presents a combined experimental and numerical study on the damage and performance of a soft-hard-soft (SHS) multi-layer cement based composite subjected to blast loading which can be used for protective structures and infrastructures to resist extreme loadings, and the composite consists of three layers of construction materials including asphalt concrete (AC) on the top, high strength concrete (HSC) in the middle, and engineered cementitious composites (ECC) at the bottom. To better characterize the material properties under dynamic loading, interface properties of the composite were investigated through direct shear test and also used to validate the interface model. Strain rate effects of the asphalt concrete were also studied and both compressive and tensile dynamic increase factor (DIF) curves were improved based on split Hopkinson pressure bar (SHPB) test. A full-scale field blast test investigated the blast behavior of the composite materials. The numerical model was established by taking into account the strain rate effect of all concrete materials. Furthermore, the interface properties were also considered into the model. The numerical simulation using nonlinear finite element software LS-DYNA agrees closely with the experimental data. Both the numerical and field blast test indicated that the SHS composite exhibited high resistance against blast loading.

关键词: high strength concrete (SHS)     engineered cementitious composite     interface     blast test     strain rate effect    

标题 作者 时间 类型 操作

Design and experiment of a novel pneumatic soft arm based on a deployable origami exoskeleton

期刊论文

Design and modeling of a novel soft parallel robot driven by endoskeleton pneumatic artificial muscles

期刊论文

Modular crawling robots using soft pneumatic actuators

Nianfeng WANG, Bicheng CHEN, Xiandong GE, Xianmin ZHANG, Wenbin WANG

期刊论文

Precise semi-analytical inverse kinematic solution for 7-DOF offset manipulator with arm angle optimization

期刊论文

Design of damping valve for vehicle hydro pneumatic suspension

DONG Mingming, HUANG Hua, GU Lian

期刊论文

A modular cable-driven humanoid arm with anti-parallelogram mechanisms and Bowden cables

期刊论文

A novel task-oriented framework for dual-arm robotic assembly task

期刊论文

A pneumatic cylinder driving polyhedron mobile mechanism

Wan DING, Sung-Chan KIM, Yan-An YAO

期刊论文

智能阀门定位系统的设计

吴爱国,王立石

期刊论文

Al-NaOH复合液态金属——一种具有热和气动特性且快速响应的水触发材料

袁博, 孙旭阳, 刘静

期刊论文

Simulation of horizontal slug-flow pneumatic conveying with kinetic theory

GU Zhengmeng, GUO Liejin

期刊论文

Different manipulation mode analysis of a radial symmetrical hexapod robot with leg–arm integration

期刊论文

Development of soft kernel durum wheat

Craig F. MORRIS

期刊论文

Trajectory planning and base attitude restoration of dual-arm free-floating space robot by enhanced bidirectional

Zongwu XIE1 , Xiaoyu ZHAO1 , Zainan JIANG1 , Haitao YANG2 , Chongyang LI1

期刊论文

Performance of soft-hard-soft (SHS) cement based composite subjected to blast loading with consideration

Jun WU,Xuemei LIU

期刊论文